Contents iii
Preface xi
Symbols and units xiii
1 Introduction 1
        1.1 History of MEMS 2
        1.2 MEMS applications are diverse 2
        1.3 MEMS fabrication is based on batch processing 4
                1.3.1 Surface micromachining makes thin structures 5
                1.3.2 Bulk micromachining makes thick structures 7
        1.4 Introduction to the Practical MEMS Practical MEMS book
2 Noise in micromechanical systems 13
        2.1 Noise as a statistical quantity 13
        2.2 Noise in frequency domain 15
                2.2.1 White noise 15
                2.2.2 1/f-noise 18
        2.3 Equipartition theorem and noise 20
                2.3.1 Thermal noise in electrical systems 20
                2.3.2 Thermal noise in mechanical systems 23
        2.4 Signal-to-noise ratio 26
        2.5 Input referred noise 27
        2.6 Averaging signals 29
3 Accelerometers 33
        3.1 Operation principle 34
        3.2 Accelerometer equation 35
                3.2.1 Low-frequency response 36
                3.2.2 High-frequency response 37
                3.2.3 Time domain response 38
        3.3 Damping 40
        3.4 Mechanical noise in accelerometers 41
        3.5 Commercial devices 44
                3.5.1 Case study: A surface micromachined accelerometer 44
                3.5.2 Case study: A bulk micromachined accelerometer 44
4 Beams as micromechanical springs 49
        4.1 Hooke's law for parallel and serial springs 50
        4.2 Material properties and theory of elasticity 51
                4.2.1 Normal stress and strain 52
                4.2.2 Shear stress and strain 54
                4.2.3 Material properties 54
                4.2.4 General definition of 3D strain 54
        4.3 Spring design equations 56
                4.3.1 Rod extension 57
                4.3.2 Cantilever bending 58
                4.3.3 Torsional springs 62
                4.3.4 Guided beams 64
        4.4 Computer simulations 65
5 Piezoresistive sensing 73
        5.1 Piezoresistive effect 74
        5.2 Piezoresistive properties of silicon 75
        5.3 Piezoresistance measurement 78
                5.3.1 Single-ended ratiometric measurement 79
                5.3.2 Differential ratiometric measurement 80
        5.4 Noise in piezoresistors 84
                        Thermal noise 84
                        Shot noise 85
                        Flicker noise (1/f-noise) 85
6 Capacitive sensing 91
        6.1 Capacitance measurement 91
                6.1.1 Rate-of-change measurement 92
                6.1.2 Displacement measurement 94
        6.2 Minimizing the effect of parasitic capacitances 97
                6.2.1 Single-chip integration 97
                6.2.2 Physical separation 98
                6.2.3 Shielding and grounding 98
                6.2.4 Bootstrapping 100
                6.2.5 Current measurement 102
        6.3 Temperature dependency 104
        6.4 Demodulation 105
7 Piezoelectric sensing 109
        7.1 Piezoelectric effect 110
                7.1.1 Longitudinal transducer 111
                7.1.2 Transverse transducer 113
        7.2 Sensing circuits 114
                7.2.1 Current measurement 114
                7.2.2 Voltage measurement 115
        7.3 Case study: A micromechanical accelerometer 117
8 Signal amplification 121
        8.1 Operation amplifiers 121
                8.1.1 Inverting amplifier 123
                8.1.2 Non-inverting amplifier 124
                8.1.3 Transimpedance amplifier 125
                8.1.4 Differential amplifier 127
                8.1.5 Instrumentation amplifier 128
        8.2 Transistor amplifiers 129
                8.2.1 Common source amplifier 130
                8.2.2 Differential pair 133
9 Amplifier noise 137
        9.1 Noise in transistors 137
                9.1.1 Noise in common source amplifier 139
                9.1.2 Noise in a differential pair 142
        9.2 Operational amplifier noise 143
        9.3 Amplifier noise in microsystems 149
                9.3.1 Case study: A piezoresistive accelerometer 149
                9.3.2 Case study: A capacitive accelerometer 150
10 Switched capacitor circuits 157
        10.1 Switched capacitor amplifier 157
        10.2 Noise in switched capacitor amplifiers 160
        10.3 Case study: A switched capacitor accelerometer circuit 162
11 Sensor specifications 167
        11.1 System specifications 167
        11.2 Element specifications 170
        11.3 Commercial accelerometer comparison 172
12 Damping 175
        12.1 Damping and quality factor 175
        12.2 Damping mechanisms 176
                12.2.1 Material losses 176
                12.2.2 Anchor losses 178
                12.2.3 Surface related losses 180
                12.2.4 Mode conversion losses 180
                12.2.5 Air damping 181
        12.3 Models for the air damping 182
                12.3.1 Mean free path and Knudsen number 183
                12.3.2 Squeeze film damping 184
                12.3.3 Lateral damping 190
                12.3.4 Air damping in complex geometries 191
                        Analytical modeling of approximate nature 191
                        Semi-analytical simulation 193
                        Computational flow simulation 194
13 Pressure sensors 197
        13.1 Pressure sensing with micromechnical diaphragms 197
                13.1.1 Circular diaphragm 198
                13.1.2 Square diaphragm 200
        13.2 Electromechanical transduction 202
                13.2.1 Piezoresistive pressure sensors 202
                13.2.2 Capacitive pressure sensors 204
        13.3 Large deformation effects 207
        13.4 Packaging and specifications 207
14 Actuation 211
        14.1 Scaling laws 211
        14.2 Scaling of actuation forces 215
                14.2.1 Electrostatic forces (capacitive actuation) 215
                14.2.2 Magnetic forces 216
                14.2.3 Thermal forces 217
                14.2.4 Piezoelectric forces 218
15 Capacitive actuation 221
        15.1 Force acting on a capacitor 221
        15.2 Parallel plate transducer 223
                15.2.1 Equilibrium and pull-in point 224
                15.2.2 Capacitive spring forces 228
        15.3 Longitudinal comb finger capacitor (comb drive) 229
        15.4 Capacitive actuation with ac voltages 232
                15.4.1 Time harmonic actuation with dc bias 232
                15.4.2 w0/2-actuation 234
16 Piezoelectric actuation 239
        16.1 Actuation force 239
                16.1.1 Longitudinal actuator 240
                16.1.2 Transverse actuator 244
17 Thermal actuation 249
        17.1 Principle of operation 249
        17.2 Leverage for large displacement 251
        17.3 Transient analysis 253
                17.3.1 Steady state 254
                17.3.2 Heating 254
                17.3.3 Cooling 256
        17.4 Higher order models 257
        17.5 Bi-stable actuators 258
18 Micro-optical devices 261
        18.1 Huygens' principle 261
        18.2 Gaussian beam optics 263
        18.3 Micromirrors 266
                18.3.1 Optical scanners 266
                18.3.2 Displays 268
        18.4 MEMS for fiber optical communications 270
                18.4.1 Attenuators 271
                18.4.2 Optical switches 273
                18.4.3 Vanishing optical MEMS 276
        18.5 Interferometry 277
        18.6 Exercises 280
19 RF MEMS 283
        19.1 Solid-state switches and varactors 284
                19.1.1 Solid-state switches 285
                19.1.2 Solid-state varactors 288
        19.2 Micromechanical varactors 289
        19.3 Micromechanical switches 291
                19.3.1 Capacitive switches 293
                19.3.2 Ohmic switches 296
                19.3.3 Switching speed 299
                19.3.4 Cost and reliability 300
        19.4 RF inductors 301
20 Modeling microresonators 305
        20.1 Lumped model for mechanical vibrations 305
                20.1.1 Vibration mode 306
                20.1.2 Effective mass and spring for the lumped resonator 308
                20.1.3 General calculation of the lumped model parameters 310
        20.2 Electromechanical transduction 312
                20.2.1 Transduction factor 312
                20.2.2 Transduction in distributed resonators 312
                20.2.3 Capacitive transduction 315
                20.2.4 Piezoelectric transduction 316
        20.3 Electrical equivalent circuit 320
        20.4 Nonlinear effects in microresonators 322
                20.4.1 Case study: Nonlinearity in a clamped-clamped beam 324
21 Microresonator applications 329
        21.1 Clock oscillator 329
        21.2 Reference oscillators 332
        21.3 RF filters 337
                21.3.1 FBAR filters 338
                21.3.2 Silicon MEMS filters 340
22 Gyroscopes 343
        22.1 Coriolis force 344
        22.2 Vibrating two-mode gyroscope 346
                22.2.1 Drive-mode vibrations 347
                22.2.2 Sense-mode vibrations 347
                        Matched modes
                        Separated modes
        22.3 Capacitive gyroscopes 349
        22.4 Quadrature error 352
        22.5 Measurement circuitry 355
        22.6 Commercial gyroscopes 357
                22.6.1 Case study: Quartz tuning fork gyroscope 357
                22.6.2 Case study: Piezoelectric metal/ceramic gyroscope 358
                22.6.3 Case study: Surface micromachined gyroscope 359
23 Microfluidics 365
        23.1 Flow in microchannels 366
        23.2 Mixing 369
        23.3 Microfluidic systems: valves and pumps 371
                23.3.1 Microvalves 371
                23.3.2 Micropumps 372
        23.4 Nonmechanical pumps 375
        23.5 Minimum sample volume 378
24 Economics of microfabrication 383
        24.1 Yield analysis 384
        24.2 Cost analysis 386
                24.2.1 Cost case study: MEMS integration 389
        24.3 Profit analysis 391
                24.3.1 Profit case study: Fabless start-up 392
                24.3.2 Profit case study: VTI Technologies 394
        24.4 Beyond the high cost manufacturing 395
A Laplace transform 399
B Mechanical harmonic resonators 403
        B.1 Frequency response 404
                B.1.1 Amplitude response 405
                B.1.2 Phase response 406
        B.2 Impulse response 406
                B.2.1 Under damped 407
                B.2.2 Critically damped 408
                B.2.3 Over damped 408
        B.3 Step response 408
                B.3.1 Under damped 409
                B.3.2 Critically damped 409
                B.3.3 Over damped 410
        B.4 Transient response of forced vibrations 410
C Nonlinear vibrations in resonators 413
        C.1 Nonlinear spring forces 413
        C.2 Unforced vibrations 414
        C.3 Forced vibrations 416
D Thermal noise generator 419
        D.1 Derivation of noise voltage generator 419
        D.2 Derivation of mechanical noise force generator 421
E Anisotropic elasticity of silicon 423
F Anisotropic piezoresistivity of silicon 429
G Often used formulas 431
        G.1 Constants 431
        G.2 Decibel (dB) units 431
        G.3 Mode shapes and resonant frequencies for beams with different boundary conditions 432
        G.4 Second moment of inertias 432
Bibliography 435
Index 455